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A noniterative quantum mechanical algorithm is presented to extract the dipole function from time dependent
probability density and external electric field data. The algorithm determines the dipole function as the solution
of an exact linear integral equation without the need to solve the Schro¨dinger equation. The inversion in
regular regions of the dipole is accurate and stable under perturbations from noisy data. The regular regions
of the dipole are automatically identified by the algorithm, and Tikhonov regularization is employed. There
is much freedom in the external electric field with the best choices generally producing broad excitations of
many eigenstates. Field designs may be estimated from the Hamiltonian or through closed loop learning
techniques in the laboratory. The inversion algorithm is tested in a simulation for O-H, which shows that the
algorithm is very reliable. Since the inversion algorithm is fast, it is argued that closed loop laboratory learning
techniques may be applied to optimally attain the dipole function in a desired region, whether local or as
broad as possible, within the scope of the dynamics and control field capabilities.

1. Introduction

The dipole moment function is valuable for analyzing
molecular spectra and as input into the controlled manipulation
of molecular dynamics. Ab initio quantum chemistry calcula-
tions1,2 and the inversion of time-independent spectral data3-5

are two traditional means for obtaining a dipole function. Each
of these approaches has its own strengths and limitations. In
some systems, the dipole moment over the domain of interest
may have a simple form (e.g., a low order polynomial). In such
a special circumstance, inversion of the dipole function reduces
to determining the expansion coefficients often by least squares
fitting of the spectral intensities. In this paper, we develop a
new inversion algorithm which is operative regardless of the
form of the dipole moment function in a system with a known
potential.

Due to recent progress in ultrafast laser technology, it is
becoming possible to generate time-dependent experimental data
with increasingly higher spatial and temporal resolution at the
molecular scale.6-8 It remains an open issue whether such data
will eventually be advantageous for extracting dipole moment
functions, but the technology is rapidly evolving. Some inverse
algorithm development for treating such data has been developed
including the introduction of special inverse tracking tech-
niques.9 Attaining high quality dipole functions from temporal
quantum observations calls for additional laboratory and
algorithmic advances. In this paper, a new time-dependent
quantum inversion algorithm will be explored for this purpose.

The field of quantum state measurement, including quantum
tomography, or holography10-13 has been receiving increasing
attention. Some efforts have even attempted to measure both
the amplitude and phase of a time-dependent wavepacket.
However, these observations either call for prior knowledge of
the Hamiltonian, specific reference states, or the assumption of
detailed available information about the system optical coupling
coefficients.12,13If only measurement of the probability density

is sought by discarding the quantum dynamical phase, then the
situation is dramatically different. There are a number of
emerging measurement methods for obtaining the probability
density data, including laser pump-dump electron diffraction;14

ultrafast X-ray diffraction;15 photoexcitation followed by auto-
ionization of a core state;16 photoelectron spectra with ultrafast
pump-probe17 and Coulomb explosion imaging.18 Besides the
probability density dataF(x, t), in order to invert the dipole
function, it is also necessary to measure the laser electric field
ε(t) providing the excitation. Experimental techniques, such as
electrooptic probing,19 frequency-resolved optical gating mea-
surement,20-22 and autocorrelation measurement,23,24are avail-
able for measuring the electric field. Generating controlled broad
band laser fields may be achieved by existing filtering and
chirping techniques.25,26

Stimulated by the increasing efforts at generating probability
density and laser electric field data, this paper will examine
its potential utility for determining molecular dipole moment
functions. Although the wave function phase is lost in the
probability density, we will show thatF(x, t) and ε(t) have
sufficient information to admit a direct inversion algorithm. The
paper will show that no special prior field designs are necessary
to implement the inversion. Furthermore it will also be argued
that closed loop learning control techniques applied in the
laboratory can be employed to steer about the density for
determining the dipole function in some desired region. A recent
work introduced an algorithm analogous to the one here for
extracting potential surfaces from probability density data.27

Below we assume that the potential is available to sufficient
accuracy by this means or some other method; the potential is
not employed for any design purpose here, but it appears
along with the laboratory data in the equation to be solved for
the dipole function. We hope that the evident capabilities of
the dipole inversion algorithm will stimulate further experi-
mental advances to make the necessary data available for
application.

10187J. Phys. Chem. A1999,103,10187-10193

10.1021/jp991767k CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/25/1999



2. Direct Time-Dependent Inversion Algorithm

For simplicity of illustration, only a one dimensional form
of the algorithm will be presented here; it is rather evident how
to generalize the formulation to multidimensions. For a system
governed by the time-dependent Schro¨dinger equation under
the dipole approximation for the field interaction,

we have Ehrenfest’s relation

whereF(x, t) vanishes toward the boundary|x| f ∞ at any finite
time. Given the probability density dataF(x, t) and the field
dataε(t), then eq 2 provides an exact integral equation to solve
for the dipole gradient∂µ(x)/∂x. There is no need to solve the
Schrödinger equation as part of the inversion algorithm. The
time t ) 0 is defined as the point for initiation of observations
of the external fieldε(t) and probability densityF(x, t) data.
The field actually may be started at a timet < 0, while the
observation process can be started at any convenient time
defined ast ) 0 just so the data over the interval 0e t e T
captures sufficient information for inversion. The dipole can
be extracted from its gradient inverted from eq 2:

wherey′ is a point whereµ(y′) is known. One example isy′ f
∞ for atoms dissociating as neutrals, where the dipole vanishes,
µ(∞) ) 0. In practice it is usually sufficient to determine the
dipole up to an arbitrary constant. The integration operation in
eq 3 tends to further reduce residual noise left in the dipole
gradient from inversion.

As discussed below, there is much flexibility in the form of
the excited wavepacket driven byε(t), although its structure
effects the inversion process. Closed loop laboratory learning
techniques may be employed to aid this process if desired, as
explained in section 6.

If the excited wavepacketψ(x, t) in eq 2 is a superposition
of a finite number of discrete bound eigenstates,

then inversion to extract the dipole by eq 2, or by any means,
will be an ill-posed problem becauseψ(x, t) only has significant
support in a finite region of the spatial domain (i.e.,µ(x) cannot
be determined well everywhere). Ifψ(x, t) also includes an
arbitrary number of continuum eigenstates,

then in principle the kernelF(x, t) on the LHS of eq 2 might
have full rank arresting the problem of ill-posedness if the
amplitude b(E) covers a sufficiently large energy band. In
practice, a typical situation will involve the superposition of a

finite number of eigenstates as shown in eq 4, and the analysis
here aims to demonstrate what can be determined regarding the
dipole under these conditions. Because of the inherent ill-
posedness of the inversion problem, generally we can only
achieve a globally approximate inverse solution. Under these
conditions, it is suggestive to put together all of the data to
find the best inverse solution through minimization ofJ0:

where it would be desirable forT to be as large as possible in
keeping with experimental capabilities. MinimizingJ0 with
respect to the dipole gradient will lead to the following equation:

The kernelA(x′, x) for this integral equation

is positive semidefinite. Equation 7 still may leave a singular
or ill-posed problem, asA(x′, x) generally has a null space. The
rank ofA(x′, x) can be qualitatively understood from considering
the wave function in eq 4 as a superposition ofN discrete
eigenstatesφn(x), n ) 1, 2, ...,N. Oftenφn(x) is a polynomial,
with the highest order beingxn, modulated by a shape factor
which will not change the number of roots ofφn(x). In such
polynomial cases, the eigenvalueλi and eigenfunctionúi(x) for
the kernelA(x′, x) will satisfy

which can be explicitly written as

On the left-hand side of eq 10, the variablesx and t are
integrated over so that only variablex′ survives. And it is evident
that (x′)2N is the highest order term on the LHS. Thusúi(x′) on
the RHS must be a polynomial, perhaps modulated by a shape
factor, of up to order2N, and then the rank ofA(x′, x) will at
most be2N. The null space ofA(x′, x) causes the singularity of
the inverse problem. Furthermore, noise in the measured
probability density data can mask small differences among some
features ofA(x′, x) to raise artificial data correlations which
may exacerbate the ill-posedness problem. Under these condi-
tions, regularization will generally be necessary, as introduced
below.

3. Regularization

Since equation 7 is generally ill-posed, at least because of
the probability density being small in some regions, then the
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corresponding dipole will be ill-defined in those locations.
Therefore, a feasible inversion algorithm should be able to (a)
identify the ill-defined regions and (b) employ an appropriate
form of regularization28 to eliminate the singular behavior.

Possible means of regularization include truncated singular
value decomposition (TSVD)29 and Tikhonov schemes.30 We
adopt the latter form since it is necessary to add only an extra
term to the original functionalJ0 to form a new functionalJ1

where the regularization parameterR is a suitably small positive
number. The regularization term acts to remove the singular
behavior of the solution, especially oscillatory features, by
extracting a solution with both good accuracy as well as proper
smoothness. MinimizingJ1 with respect to the dipole gradient
will lead to the following equation for the regularized solution:

which can be rewritten as

whereA(x′, x) is given in equation 8 andb(x′) is defined as the
right-hand side of eq 12. In practice, eq 13 will be solved on a
discrete grid, and a matrix-vector form becomes

whereI is a unit matrix andux andb are column vectors. The
matrix A is positive semi-definite with eigenvaluesλi g 0 ,
and the inverse of the matrix is well behaved with (λi + R) >
0 making the inversion unique and singularity free. SinceR is
a small number, it has little impact on the significantly nonzero
eigenvalues ofA, which is essential for the regularized solution
to be a good approximation to the true dipole function in the
well-defined regular region.

4. Stability Analysis for Noisy Data

BecauseA andb are generated from the observedF(x, t) and
ε(t) data, they will be subject to measurement and/or numerical
errors. In addition,b depends on the potential which will also
be subject to some error. It is important to address the effect
that perturbations inA and b have on the solutionux. Errors
enter from the deviation in measurements ofF(x, t) and ε(t),
imprecision of the potential surface obtained elsewhere, and the
time derivative of the expectation value ofx in b [cf. the right-
hand side of eq 12]; however, bothA and b involve time

integration which will reduce the error level to some degree. If
any residual errors changeA to A + δA, andb to b + δb, then
these disturbances will introduce corresponding changes inux

to ux + δux. The perturbed equation is given by

Subtracting eq 14 from eq 15 yields

Here we desire to put a bound onδux in relation to the norm of
δb and δA. Denoting|‚| as a suitable norm (e.g.,|‚|F, |‚|1,
|‚|2, or |‚|∞) of the corresponding matrix or vector, then from
eq 16 we have

Therefore, since|b| e |A + RI| |ux| from eq 14, then eq 17
yields

Conventionally, the data noise level is assumed small to satisfy
|(A + RI )-1 δA| < 1, and the condition number of matrixM
is defined asc(M ) ≡ |M| |M-1|, which can further simplify
eq 18 to be

From eq 19, we see that after regularization the relative error
in the solution is bounded by the relative errors in the data. If
R ) 0 (i.e., no regularization), the condition number of the
singular matrixA will be very large leading to significant
deviation in the solution. Thus the regularization serves to
stabilize the inverse solution with respect to noisy data. This
point will be explored in the simulated inversion below by
comparing the regularized and unregularized solutions.

A more elaborate analysis may also be carried out showing
the detailed relationship between small disturbances inδF(x, t)
and δε(t) and resultant error inux. It is expected that small
perturbations in the probability density and the external field
will result in small perturbations inux, as an analog to the results
of an error analysis of a similar inversion algorithm for the
potential function.27

5. Simulated Inversion

In the simulated inversion, we choose O-H as an illustration;
all the parameters are expressed in atomic units (au). To execute
the inversion, the potential is assumed to be known. For purposes
of simulation here we take the following Morse potential31 as
an adequate description of the O-H electronic ground state
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whereD0 ) 0.1994,â ) 1.189, andx0 ) 1.821. The dipole
moment as a function of the O-H bond length is taken as32

where µ0 ) 3.088 andx* ) 0.6. In the simulation, we will
adopt the dipole function in eq 21 to generate “experimental”
probability density data and apply the inversion algorithm in
eq 12 to extract the dipole to test the behavior of the algorithm.

The molecule is assumed to be in the vibrational ground state
when the laser field is turned on. It is evident that generally the
best excitation pulses in terms of maximum information content
will be those that result in the wave packet having the largest
number of eigenstates. In the following treatment, the imple-
mentation of the algorithm will be displayed with two different
laser fields. The examples will show that the regular regions of
the dipole depend on the nature of the excitation laser field and
the resultant wave packet. In the first simulation example, a
broad band laser field is rather arbitrarily chosen as

As evident from the simulations, there is no strong sensitivity
to subtle details in the field. For example, the field may just as
well be turned on/off slowly in keeping with laser capabilities.
In the first step of the inversion, the experimental probability
density and the external field data are used to construct the
kernel in eq 8. The corresponding kernelA(x′, x) is plotted in
Figure 1. Figure 1 roughly identifies the regular region, and
the corresponding singular region (i.e., where the matrixA(x′,
x) is zero, constant, or contains correlations in two rows or
columns) for inversion. In Figure 2,b(x′) is plotted to display
the invertible region in another way. The elements of vectorb
become almost zero in the regions ofx′ < 1.1 andx′ > 3.5,
which is consistent with the null space ofA(x′, x).

In the second step, the number of points that can be inverted
on the dipole is estimated from the number of nonzero
eigenvalues of the kernel matrix. As analyzed in section 2, the
number of significant nonzero eigenvalues of the kernel matrix
A(x′, x) in eq 8 dictates the maximum amount of invertible
information (e.g., discrete points) of the dipole that may be
determined. In the simulation, there are about 50 nonzero
eigenvalues (some contributions come from continuum eigen-
states) within the condition number of 1014. This indicates that
roughly the same number of discrete points of the dipole may

be determined; a few points more or less will not cause any
trouble due to the use of regularization. We choose the discrete
number of points to be 50, uniformly spaced over the inversion
rangex ∈ [0.94, 5.35], andT ) 2.0× 103 is taken to carry out
the time integration in the kernel. The points are shown in Figure
2.

In the third step, the Tikhonov regularization procedure is
applied to invert the matrix kernel to obtain the dipole gradient.
In order to set flags to distinguish the regular and singular
regions, we utilize the property that the solution in the singular
regions is relatively sensitive, while in the regular region it is
relatively stable with respect to changes of the regularization
parameter (as well as the data noise level). Two extreme cases
are compared. One isR ) 0 corresponding to no regularization,
while the other isR ) Ropt corresponding to optimal regulariza-
tion. Ropt is determined by scanning overR to find the global
minimum point of the functionalJ2

which minimizes the residual of a solution similar to that for
J0 in eq 6, except that now the solution isR-dependent. For
eachRi, the gradient∂µ(x, Ri)/∂x in eq 23 is the solution that
minimizesJ1 at R ) Ri. The regular region for inversion was
defined as the domain where the solution difference betweenR
) Ropt andR ) 0 changed by no more than a tolerance of 1%
(the value reflects, although it is not necessarily the same as,
the level of numerical and measurement errors); the counterpart
domain is denoted as the singular region. Figure 3 plots the
relative error of the solution change betweenR ) Ropt andR )
0. Under the 1% criterion, the regular region is continuousx ∈
[1.30, 3.55] and shown by grey shadow, while the singular
regions arex ∈ (0, 1.30) andx ∈ (3.55, ∞) (the regular and
singular regions could have complex disjoint structure for the
inversion of multidimensional systems). The inverted dipole
gradient for the two cases is displayed in Figure 4. As expected,
the optimal regularized solution preserves good accuracy in the
regular region, and it achieves global smoothness in both the
regular and singular regions. In this example, the field happens
to be especially attractive, as the inversion even without
regularization is quite good.

Figure 1. Three-dimensional and contour plots showing the coordinate
dependence of the kernelA(x′, x) in the first simulated inversion. The
significantly nonzero region roughly defines the regular domain for
inversion, while the nearly zero region is singular for inversion.

µ(x) ) µ0 x e-x/x* (21)

ε(t) ) 0.35 cos(t2/160000) exp [- sin(t2/10000)] (22)

Figure 2. The coordinate dependence of the inhomogeneityb(x′). The
asymptotic regions ofx′ < 1.1 andx′ > 3.5 show similar behavior to
the singular domains ofA(x′, x) shown in Figure 1.
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In the fourth step, eq 3 is adopted to extract the dipole from
the inverted dipole gradient. Figure 5 compares the dipoles
extracted from the dipole gradients by inversion withR ) 0

and R ) Ropt. For this excitation field, both dipoles are in
excellent agreement with the truth in the regular region. In
general, the inverted dipole in the regular region will differ from
the truth by a constant which is dynamically irrelevant from
the integration in eq 3.

In the second simulated inversion, the laser field is chosen
as

which contains high frequency components inducing bound-
continuum transitions but a reduced amount of frequency
components inducing bound-bound transitions. Thus, the excita-
tion for inversion purposes is not as appropriate as in the first
example. In this case, the discrete number of points is still
chosen to be 50, uniformly spaced over the inversion rangex ∈
[0.94, 5.35], andT ) 3.0× 103 is taken as the time observation
interval. Following the same inversion procedure as in the first
example, we obtain the dipole gradients plotted in Figure 6 with
optimal regularization and without regularization. The regular
region for inversion is indicated by the grey shadow wherex ∈
[1.40, 2.90], and the other regions are singular for inversion.
The range of the regular inverse region is narrower than that of
the first example since the excited wavepacket contains less
information about the dipole. Figure 7 shows the extracted
dipoles. With no regularization, the inverted dipole in the regular
region is very close to the true dipole except for a dynamically
irrelevant constant shift, which arises from the residual of
integration over the oscillatory singular region. With optimal
regularization, the inverted dipole is in excellent agreement with
the true function. In general, a finite constant shift will likely
occur regardless of any regularization, unless independent
information (e.g., a known dipole at a point in the regular region)
is available which then can determine the reference dipoleµ(y′)
in eq 3 at pointy′.

6. Closed Loop Laboratory Learning Procedure

The analysis in the previous sections shows that a fast and
reliable algorithm may be established to extract dipole functions
from measurements of the electric field and ultrafast high
resolution probability density data. The two illustrations in
section 5 indicate a considerable degree of flexibility and

Figure 3. Relative change of the inverted dipole derivative when the
regularization parameter changes from the optimal valueR ) Ropt to R
) 0 (indicated asR0 in the plot). The grey shadow regionx ∈ [1.30,
3.55] defines where the solution change is less than 1%, which is
referred to as the regular region.

Figure 4. Comparison between the exact and the two inverted dipole
gradients, corresponding to optimal regularization and no regularization.
In the grey shadow regular region, both inversions are quite accurate.
In the singular regions, the inversions are uncertain.

Figure 5. Comparison between the exact and the two extracted dipoles
from inversion with optimal regularization and without regularization.
In the singular regions, the dipoles are uncertain. In the regular region,
the both extracted dipoles are very accurate. Knowledge of an absolute
reference point in the regular region is necessary to eliminate a possibly
dynamically irrelevant constant shift.

Figure 6. Comparison between the exact and the two inverted dipole
gradients, corresponding to optimal regularization and no regularization.
The inversion with optimal regularization is smoother than that without
regularization in the singular regions. In the grey shadow regular region,
both inversions are quite accurate. In the singular regions, the inversions
are uncertain. The same 1% criterion employed in Figure 3 is used to
distinguish the regular and singular regions.

ε(t) ) 0.35 cos(t2/20000) exp [- sin (t2/1000)] (24)
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robustness in the choice of the driving electric field. In any
particular molecular application, there may be the additional
desire to obtain the dipole either near some particular point, or
perhaps, over the largest region possible. Although there will
surely be no unique field meeting such additional criteria, merely
guessing at the field would likely not be adequate. In addition,
it is not possible to perform high accuracy prior field designs
ε0(t) since that would require knowledge of the dipole before-
hand. Secondly, these efforts, even with the approximate dipole,
call for solving the Schro¨dinger equation, which is an arduous
task in multidimensions.

The above circumstances naturally lead to consideration of
direct laboratory closed loop learning of the optimal laser field
for the purpose of dipole function extraction from the data. This
procedure has certain parallels, as well as important distinctions,
with the earlier suggestion33-37 of performing experiments to
learn how to control molecules and steer them to some desired
final product state. Such experiments have now been demon-
strated38-41 in the laboratory, and here, we propose their
extension for inversion purposes.

Figure 8 shows a schematic diagram of the overall process
where algorithms for inversion and learning are involved. Two
features distinguish this process from the procedure of quantum

learning control by a closed loop.33-41 First, in the case of dipole
extraction from the data, it is necessary to measure the electric
field ε(t) rather than merely the stand-in laser “knob settings”.
Second, the actual inversion algorithm needs to be directly
involved in the closed loop, as indicated. The output of the
inversion algorithm ultimately is the desired dipole function,
but during intermediate cycles of the loop, the inversion
algorithm also provides specific characteristicsD(x) of the
inversion process for employment in the learning algorithm, to
suggest the next experiment for further refinement of the dipole
function, etc. Considering the comments above, one case could
be defined asD(x) > 0 prescribing the stable domain of the
dipole inversion algorithm, and the learning algorithm would
then be charged with the goal of maximizing the domain with
respect to the control field, maxε D(x). Another circumstance
concerns the desire to learn about the dipole in some prespecified
localeR(x) > 0, such that the learning algorithm would then
aim to minimize a suitable norm minε|D(x) - R(x)|. Any of
a variety of learning algorithms should be effective for these
purposes, based on prior theoretical studies33-37 and currently
emerging experience in the laboratory.38-41

Special attention to certain details is necessary for successful
execution of this overall laboratory procedure for dipole
determination. The two algorithmic operations and the data
observations need to be sufficiently fast, such that the closed
loop can be traversed in a reasonable period. It is anticipated
that the number of iterations called for will be less than needed
to meet typical closed-loop target state control objectives,33-41

because the inversion problem shows evidence for broad latitude
in the nature of the controls that could be successful. Neverthe-
less, the loop may be traversed hundreds of times or more. Fast
field determination techniques are becoming available, which
should aid this process. In addition, the strictly linear nature of
the inversion algorithm should be an important factor, and the
learning algorithms have already been demonstrated to be
fast.33-41 Incremental dipole upgrades could be introduced at
each cycle, to further accelerate the inversion algorithm. We
leave the suggestion of performing the experiments, as indicated
in this section, for a full testing of the concept.

7. Summary

This paper presented a noniterative direct inversion algorithm
to assess the feasibility of extracting the dipole moment function
from emerging ultrafast high resolution probability density data
and laser field measurements. Tikhonov regularization is
introduced to cope with the singular nature of the problem, and
an error analysis shows that the inversion is stable with respect
to noisy data. A criterion was defined to distinguish the regular
and singular regions from the experimental data. The algorithm
was successfully tested for the inversion of a one-dimensional
model system.

The inversion algorithm has several attractive features. The
laser field can be chosen with much freedom. A desirable
excitation is one which is sufficiently broad band to access many
molecular eigenstates. The algorithm does not require solving
the Schro¨dinger equation and it is noniterative through rigorous
formulation as a linear integral equation. The fast speed and
stability of the algorithm permit its direct use in the laboratory
with a closed loop learning algorithm. In this fashion a full
automation of the inversion process should be possible. In
addition the general structure of the algorithm has a simple
extension to multidimensions assuming such laboratory data
becomes available. Regardless of dimension the algorithm still
has the structure of a linear integral equation. However, a high

Figure 7. Comparison between the exact and the two extracted dipoles
from inversion with optimal regularization and without regularization.
In the singular regions, the dipoles are uncertain. In the regular region,
the extracted dipole without regularization primarily differs from the
truth by a constant, while that with optimal regularization is quite
accurate with a small dynamically irrelevant constant.

Figure 8. A closed loop laboratory learning process for extracting
the dipole functionµ(x) from high resolution probability density data
F(x, t) and observation of the electric fieldε(t). The loop could be
initiated by a trial fieldε0(t) from a design estimate. Each loop of the
inversion algorithm would provide an update forµ(x), as well as an
identification of the stable inversion domainD(x) for optimization by
the learning algorithm. This same logic may also be extended to extract
the potential functionV(x) just from dataF(x, t).
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dimensional kernel would likely call for introducing special
numerical methods, including iteration, for solution. In addition
the data could be generated in a sequence of experiments where
each experiment only drove the density to explore a moderate
domain of configuration space. In this fashion each sequential
inversion of the incremental data would not be computationally
expensive regardless of the system dimension. A full examina-
tion of this matter is left to future studies.

Although this paper focused on dipole inversion from ultrafast
high resolution observations, the logic involved may be married
with that of a previous effort,27 considering analogous techniques
to extract the potential energyV(x). In this case, only the
probability density data is necessary, without observation of the
field. The structure of this algorithm is essentially the same as
for the dipole, producing the following regularized equations
to be solved.

whereA′(x′, x), and b′(x′) have the similar structure to their
counterpart functions in eq 13. In this regard, Figure 8 includes
the extension to consider the extraction of the potential and/or
dipole function. This paper and previous theoretical33-37 and
experimental efforts38-41 indicate that all the closed loop
components are generally in hand for this effort. The crucial
necessary new element is the probability density data, which
we hope this paper helps stimulate.
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∫-∞

∞
[A′(x′, x) + δ(x′ - x)R′]

∂V(x)
∂x

dx ) b′(x′) (25)
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